Code! Pages HOLLIED FRELIMINARY DATA

N66-18387

ract Manual Colculations of Ionospheric Parameters using

ACCESSION NUMBER) (THRE

Single-Polynomial Analysis

J. E. Titheridge

ASA CR OR TMX OR AD NUMBERadio Research Centre, University of Auckland, New Zealand

HC 2,00 MF, 50

Cat 13

Two extensions of the basic polynomial analysis are described. Firstly the polynomial representation of the real height curve is modified to include a parabolic peak; this greatly increases the accuracy of calculations near the peak of the ionospheric layers. Secondly the analytic expression for the real height curve is used to obtain expressions for the height of the peak (h_n) and the scale height at the peak (H). Integration of the real height curve also gives an expression for the effective sub-peak thickness of the ionosphere (T), defined as the total amount of ionization below the peak divided by the density at the peak. These three expressions are then used to obtain coefficients relating h_n , H and T to the virtual heights at any required frequencies.

84 sets of coefficients are given for analysing h'(f) records taken anywhere in the world, with critical frequencies between 1.5 and 20 Mc/s. These coefficients give the values of h, H, T and the real heights of reflection directly in terms of the virtual heights at 5 or 6 different frequencies. For calculations on a single ionospheric layer the accuracy is extremely high, being equivalent to that obtained with a lamination analysis using more than 50 points. For calculations on the day-time F layer coefficients are provided with alternative sampling points chosen to reduce the effects of the E and F1 layer cusps, so that the height, scale height and total content of the F layer can be determined with an accuracy equivalent to a lamination analysis using more than 20 points. Finally coefficients including an extraordinary-ray correction for the underlying ionization are given, to enable accurate calculations on the night-time F layer.

Introduction

The most valuable technique of ionospheric research is the use of sweepfrequency virtual height records (ionograms) to determine the variation of the electron density with height. For many years ionograms have been recorded at the rate of several thousand per day at observatories all over the world. However only a very small proportion of these records are fully analysed, because of the length and complexity of the analysis. The purpose of the present paper is to give a simple, rapid method of analysing these records to obtain the main ionospheric parameters: the height of the peaks of the different layers, the scale height at the peak and the total number of electrons below the peak. These parameters are obtained directly from the virtual heights measured at five or six frequencies. The accuracy is equal to that obtained by carrying out a complete profile calculation using a lamination analysis with more than twenty points. The real heights of reflection at the measured frequencies can also be obtained if required, giving five or six points on the electron density profile. The basis of the method is described in sections 2 and 3, while section 4 gives 84 sets of coefficients which can be used to analyse day-time or night-time ionograms taken anywhere in the world.

The analysis of ionograms consists basically of converting an observed h'(f) curve, which gives the virtual height of reflection h' as a function of the wave frequency f, into an N(h) curve giving the variation of the electron density N with height h. These two curves are related by

$$h^{\dagger}(f) = \int_{0}^{h_{\Gamma}} \mu^{\dagger} dh \tag{1}$$

where the group refractive index μ^{\bullet} is a complicated function of f, N and the strength and direction of the magnetic field. h_{r} is the height of reflection of the wave of frequency f, and depends on f, N and (for the extraordinary ray only) the strength of the magnetic field.

There is no analytic solution of (1), giving N(h) in terms of h'(f). Consequently the first method of analysing ionograms was to assume various model N(h) curves, and compare the h'(f) curves calculated from these models with those observed experimentally. Later Budden (1954) suggested an N(h) model consisting of a large number of linear segments. The integral in (1) can then be replaced by a finite sum, and the sizes of the successive segments determined from the virtual heights of the waves reflected at the ends of the segments. This gives the 'lamination' method of analysis which is widely used at present (Thomas, 1959). It gives good accuracy when a large number of segments are used, but the calculations then become rather lengthy and an electronic computer is generally employed.

The development of the polynomial method (Titheridge, 1959, 1961) was an attempt to obtain a more efficient process for the analysis of ionograms.

The N(h) profile was represented by a single polynomial, of the form

$$h = \alpha_{1} + \alpha_{2}f_{N}^{2} + \alpha_{3}f_{N}^{3} + \alpha_{4}f_{N}^{4} + \dots + \alpha_{n}f_{N}^{n}$$
 (2)

where f_N is the plasma frequency, proportional to the square root of the electron density. The number of terms (n) in the polynomial is taken equal to the number of frequencies at which the virtual heights are to be measured. Coefficients can then be obtained giving the real heights of reflection at these frequencies directly in terms of the measured virtual heights. This gives n points on the N(h) curve, the calculated real heights lying on the polynomial of lowest degree which is consistent with the observed virtual heights. Because of the assumption of a single, smooth real height curve the number of points needed for an accurate analysis is much less than in the normal lamination method; typically the number of points required for a given accuracy is reduced by a factor of five for day-time ionograms, and a factor of ten at night.

The polynomial approach was also suggested independently by Unz (1961) and by Knecht, van Zandt and Watts (1962). Unz envisaged a lengthy, manual calculation of the coefficients α_i , but no results were given and the process he suggests must be modified slightly before useful results can be obtained, since

- (1) The real heights finally obtained include an "arbitrary additive constant" which is not determined. This meaningless result is caused by an error in the expressions for the virtual heights, which should include the constant term a...
- (2) The direct expansion of h in powers of f_N , including a term in f_N^1 , can give unstable results.

This instability occurs because the virtual heights are not observed at low frequencies. Consequently there are an infinite number of possible real height curves, corresponding to different heights and gradients near $f_N=0$, which would give the observed virtual heights. As in all methods of analysis some assumption must be made about the behaviour of the real height curve at low frequencies if a single, physically reasonable result is to be obtained. In the polynomial analysis it has been found sufficient to require that the real height curve is horizontal, i.e. $dh/df_N=0$, at $f_N=0$.

If a single-polynomial analysis is used with ten or more points the solution becomes unstable whatever starting assumptions are made. The instability is revealed by the occurrence of large positive and negative values in the calculated polynomial coefficients, so that the real heights are obtained as the difference of comparatively large multiples of the virtual heights. is caused by the oscillations which occur in an approximating polynomial fitted through a large number of points. With the polynomial approach, however, a comparatively small number of points is often sufficient for accurate results. The method described in the present paper uses the virtual heights measured at five or six different frequencies. This is sufficient for accurate profiles of the night-time F layer, and gives a good representation of the overall shape of the day-time ionosphere since the results are equivalent to a lamination analysis using more than 20 points. For a detailed profile of the day-time ionosphere many more points are needed, and the real height curve must be represented by a series of overlapping polynomials (Titheridge, 1961, 1965).

2. The Addition of a Parabolic Peak to the Polynomial Assumption

The polynomial type of analysis has so far been based on expressions similar to that given in equation 2. It is not, however, necessary to take has a polynomial in f_N , and many other expressions for the real height curve can be used. In general, a 'polynomial' type analysis can be based on the assumption that the real height curve is given by

$$h = \alpha_1 \emptyset_1(f_N) + \alpha_2 \emptyset_2(f_N) + \dots + \alpha_n \emptyset_n(f_N)$$
 (3)

where \emptyset_1 , \emptyset_2 , \emptyset_n are any real, differentiable functions of f_N .

A simple polynomial (or lamination) representation of the real height curve cannot be accurate near the peak of the ionosphere, where $\mathrm{dh}/\mathrm{df}_N$ becomes infinite. Consequently most methods of analysis become increasingly innaccurate as the peak of a layer is approached, and give only an approximate result for the height of the peak. To reduce this error a function

$$\phi_{\rm p} = 1 - (1 - f_{\rm N}^2/f_{\rm c}^2)^{\frac{1}{2}}$$

is added to the normal polynomial model of the real height curve, which then becomes

$$h = \alpha_1 + \alpha_2 f_N^2 + \alpha_3 f_N^3 + \dots + \alpha_{n-1} f_N^{n-1} + \alpha_p \{1 - (1 - f_N^2 / f_c^2)^{\frac{1}{2}}\}$$
 (4)

The function \emptyset_p corresponds to a parabolic layer with unit semithickness and a critical frequency f_c , so that dh/df_N now becomes infinite at $f_N = f_c$.

The real height model should become approximately parabolic near $f_N=f_c$, to agree with theoretical calculations of the shape of the peak. To ensure this the profile given by the first n-1 terms must become horizontal at $f_N=f_c$. This is achieved by adding a suitable term in f_N^n . Thus for a six point analysis the form finally assumed for the real height curve is $h=\alpha_1+\alpha_2(x^2-\frac{1}{3}x^6)+\alpha_3(x^3-\frac{1}{2}x^6)+\alpha_4(x^4-\frac{2}{3}x^6)$

 $+ \alpha_5(x^5 - \frac{5}{6}x^6) + \alpha_p\{1 - (1 - x^2)^{\frac{1}{2}}\}$ (5)

where $\mathbf{x} = \mathbf{f_N/f_c}$. The real height curve is therefore represented by a parabolic layer plus a correcting polynomial, the polynomial having $\mathrm{dh/df_N} = 0$ at $\mathbf{f_N} = 0$ (to reduce the variations in the amount of underlying ionisation) and $\mathrm{dh/df_N} = 0$ at $\mathbf{f_N} = \mathbf{f_c}$ (to ensure that the peak is approximately parabolic).

Equation (5) is used to derive a set of polynomial coefficients, giving the real heights at six frequencies (i.e. at six values of x) in terms of the virtual heights at those frequencies. The procedure is basically similar to that employed in the simple polynomial analysis (Titheridge, 1961), and is outlined below.

Differentiating equation (5) gives

$$dh = \sum_{j=2}^{5} j \alpha_{j} (x^{j-1} - x^{5}) dx + \alpha_{p} x (1-x^{2})^{-\frac{1}{2}} dx$$

so that equation (1) becomes

$$h'(f_i) = \alpha_1 + \sum_{j=2}^{5} j\alpha_j \int_{0}^{x_i} \mu'(x^{j-1} - x^5) dx + \alpha_p \int_{0}^{x_i} \mu'x(1-x^2)^{-\frac{1}{2}} dx$$

where $x_i = f_i/f_c$. Substituting $t^2 = 1 - f_N^2/f_i^2 = 1 - x^2/x_i^2$

we get $xdx = -x_i^2 tdt$ and

$$h'(f_{i}) = \alpha_{1} + \sum_{j=2}^{5} j\alpha_{j}x_{i}^{2} \int_{0}^{1} \mu't(x^{j-2}-x^{2})dt + \alpha_{p}x_{i}^{2} \int_{0}^{1} \mu't(1-x^{2})^{-\frac{1}{2}}dt$$

or

$$h'(f_i) = b_{i1}^{\alpha_1} + b_{i2}^{\alpha_2} + b_{i3}^{\alpha_3} + b_{i4}^{\alpha_4} + b_{i5}^{\alpha_5} + b_{i6}^{\alpha_p}$$
 (6)

where $b_{i1} = 1.0$,

$$b_{ij} = jx_i^2 \int_0^1 \mu' t(x^{j-2} - x^{i}) dt \qquad \text{for} \qquad j = 2, 3, 4 \text{ and 5}$$
and
$$b_{i6} = x_i^2 \int_0^1 \mu' t(1 - x^2)^{-\frac{1}{2}} dt.$$

These values of b_{ij} must be calculated at each of the six frequencies f_i at which the virtual heights are measured. The integrals can be calculated with sufficient accuracy, for magnetic dip angles up to 80 degrees, using a 12 point Gaussian relation. The integrands are well-behaved and the 72 values of μ 't (12 for each frequency) are calculated from the standard expressions (Shinn and Whale, 1952).

For each frequency f_i , equation (6) gives the virtual height in terms of the real height parameters α_j . The set of six equations can be written in matrix notation as $h' = B\alpha$ where B is the 6 x 6 matrix with elements b_{ij} , and h' and α are 6 x 1 column matrices. Inverting the matrix B we get the set of six equations

$$\underline{\alpha} = \underline{B}^{-1} \underline{h}^{\bullet} \tag{7}$$

giving the real height parameters α_j in terms of the observed virtual heights. Applying equation 5 for each value of x_i then gives the set of equations

$$\underline{\mathbf{h}} = \underline{\mathbf{A}} \ \underline{\alpha} = (\underline{\mathbf{A}} \ \underline{\mathbf{B}}^{-1}) \ \underline{\mathbf{h}}^{*} \tag{8}$$

where \underline{A} is a 6 x 6 matrix with elements a_{ij} such that $a_{i1} = 1.0$, $a_{ij} = x_i^2 - jx_i^6/6$ for j = 2 to 5, and $a_{i6} = 1 - (1 - x_i^2)^{\frac{1}{2}}$. The product of the matrices \underline{A} and \underline{B}^{-1} therefore gives the required polynomial coefficients, relating the real heights at the six frequencies f_i to the virtual heights at those frequencies.

3. Direct Calculations of the Height of the Peak, the Scale Height at the Peak and the Sub-peak Content

3.1. Calcualtion of h

The polynomial approach is not restricted to the determination of the real heights of reflection corresponding to a series of measured virtual heights. The method employs an analytical expression for the entire real height curve, and can therefore be used to determine any required features of this curve. In particular, any number of real heights can be calculated at any required frequencies by using these frequencies in the matrix \underline{A} . If n virtual heights are measured and m real heights are required, this gives an m x n matrix \underline{A} and an m x n matrix of coefficients $\underline{A} \ \underline{B}^{-1}$.

One of the most important ionospheric parameters is the height h_m of the peak of an ionospheric layer. This is the real height at the frequency $f = f_c$, so that coefficients for calculating h_m are obtained by putting $x_i = 1$ in the matrix \underline{A} . Thus if the virtual heights are measured at six frequencies f_i , the height of the peak of the layer is given by

$$h_{m} = \beta_{1}h^{\dagger}(f_{1}) + \beta_{2}h^{\dagger}(f_{2}) + \beta_{3}h^{\dagger}(f_{3}) + \beta_{4}h^{\dagger}(f_{4}) + \beta_{5}h^{\dagger}(f_{5}) + \beta_{6}h^{\dagger}(f_{6})$$
(9)

where the coefficients β are obtained by multiplying the matrix \underline{B}^{-1} by the line matrix (1, 2/3, $\frac{1}{2}$, 1/3, 1/6, 1).

3.2. Calculation of the Scale Height H

The polynomial terms in the expression for the real height curve (equation 5) give $dh/df_N = 0$ at $f_N = f_c$. The curvature at the peak of the layer is therefore produced entirely by the last term in equation (5), so that the peak is approximately parabolic with a scale height of $\frac{1}{2}\alpha_p$. That is, the scale height at the peak of the layer is given in terms of the coefficients α by

$$H = 0.\alpha_1 + 0.\alpha_2 + 0.\alpha_3 + 0.\alpha_4 + 0.\alpha_5 + \frac{1}{2}\alpha_p$$
 (10)

or $H = (0,0,0,0,0,\frac{1}{2})$. α

The column matrix $\underline{\alpha}$ is given in terms of the observed virtual heights by $\underline{\alpha} = \underline{B}^{-1}\underline{h}^{\bullet}$. Coefficients giving the scale height H in terms of the observed virtual heights are therefore obtained by multiplying \underline{B}^{-1} by the line matrix $(0,0,0,0,0,\frac{1}{2})$.

3.3. The Calculation of the Total Electron Content up to the Peak of the Layer

The total number of free electrons below the peak of an ionospheric layer is most conveniently calculated in terms of the effective thickness (T) of the layer. This is defined as the ratio of the sub-peak electron content to the peak density, so that

$$T = \frac{1}{N_{\rm m}} \int_{-h_{\rm o}}^{h_{\rm m}} N \, dh \tag{11}$$

where h_0 is the height of the bottom of the ionosphere (at N = 0) and N_m is the electron density at the peak of the layer. Integrating by parts gives

$$T = h_{m} - \frac{1}{N_{m}} \int_{0}^{N_{m}} h \ dN$$

or

$$T = h_{m} - 2 \int_{0}^{1} h x dx$$

where $x = f_N/f_c = (N/N_m)^{\frac{1}{2}}$ as before.

From equation (5) we have

$$h = \alpha_1 + \sum_{j=2}^{5} \alpha_j (x^j - jx^6/6) + \alpha_p \{1 - (1-x^2)^{\frac{1}{2}}\}$$

and
$$h_m = \alpha_1 + \sum_{j=2}^5 \alpha_j (1 - j/6) + \alpha_p$$

so that

$$T = \sum_{j=2}^{5} \alpha_{j} \{1 - \frac{j}{6} - 2 \int_{0}^{1} (x^{j+1} - jx^{7/6}) dx\} + 2\alpha_{p} \int_{0}^{1} x(1-x^{2})^{\frac{1}{2}} dx$$

$$= \sum_{j=2}^{5} j(\frac{1}{j+2} - \frac{1}{8})\alpha_{j} + \frac{2}{3}\alpha_{p}$$

or
$$T = 0.\alpha_1 + \frac{1}{4}\alpha_2 + \frac{9}{40}\alpha_3 + \frac{1}{6}\alpha_4 + \frac{5}{56}\alpha_5 + \frac{2}{3}\alpha_p$$
 (12)

Coefficients giving the effective thickness T in terms of the observed virtual heights are therefore obtained by multiplying the matrix \underline{B}^{-1} by the line matrix (0,1/4,9/40,1/6,5/56,2/3).

4. World-wide Coefficients for the Analysis of Ionograms

4.1. The Effect of the Earth's Magnetic Field

The calculated coefficients depend on the frequencies involved and on the strength and direction of the magnetic field. When the frequencies used are fixed submultiples of the critical frequency, it can be shown that the coefficients depend only on the ratio of the critical frequency f_c to the gyrofrequency f_H and on the magnetic dip angle I. Coefficients calculated for a sufficiently wide range of values of f_c/f_H and of I can therefore be used for analysing ionograms taken anywhere in the world.

To examine the effect of changes in f_c/f_H and in I, the virtual height curve corresponding to a parabolic layer at the equator was analysed using coefficients calculated for a wide variety of different conditions. The results are shown in figure 1, which gives the amount by which the calculated heights were less than the true height. The reduction is expressed as a percentage of the true height measured from the bottom of the layer. The curves shown apply to a frequency of $0.9f_c$, where f_c is the critical frequency of the parabolic layer, but the percentage reduction is approximately the same at all frequencies above $0.5f_c$.

The values of I and of f_c/f_H used for the coefficients of table 1 are shown by the crosses in figure 1. These values are spaced at intervals giving about \mathcal{Z} change in the heights calculated from a fixed h'(f) curve. Records taken under any conditions can therefore be analysed with a maximum error, through using the nearest set of coefficients, of about one percent. When interpolating between the given values of I the 'nearest' coefficients should be chosen from figure 1 to give approximately the correct heights; that is to give the correct reduction from the no-field height. Thus to analyse records taken at a dip angle of 40 degrees with a critical frequency of $8f_H$, the coefficients calculated for I = 35° and $f_c = 6f_H$ should be used.

The percentage errors in the calculated values of scale height H and effective thickness T are about twice the errors in the calculated heights. Thus for a layer with a semithickness of 100 km the maximum error in the calculated heights (through using the nearest set of coefficients) is about 1 km, while the maximum errors in H and T are about % or 1 km. An accuracy greater than this is seldom justified for the analysis of normal ionograms. Accurate coefficients for any required conditions can, however, be obtained by linear interpolation between the points marked in figure 1. If a series of records from one or more stations is to be analysed exact coefficients calculated for any required frequencies will be supplied by the author. The computer program used takes about six minutes to calculate and print each set of coefficients in the form of tables 1, 2 and 3.

4.2. Coefficients for General Use (Table 1)

Table 1 gives five-point coefficients calculated for the values of I and of f_c/f_H marked in figure 1. These coefficients are suitable for general calculations on the E and F layers under any conditions. In all cases the virtual heights are measured at frequencies of .15f_c, .44f_c, .68f_c, .87f_c and .98f_c, where f_c is the critical frequency of the layer. When the ionograms have a logarithmic frequency scale, the required virtual heights can be rapidly obtained by using a transparent scale with six vertical lines corresponding to the ratios .15, .44, .68, .87, .98, and 1.0. The scale is adjusted so that the 1.0 line falls on the critical frequency of the layer considered, and the heights where the other lines cross the virtual height trace are recorded.

This procedure is identical to that used with the five-point Kelso-Schmerling coefficients. The frequency ratios used in the present work are in fact based on the Schmerling coefficients (Schmerling and Ventrice 1959), since calculations with a wide range of different frequency intervals showed clearly that these coefficients provide the optimum sampling points for accurate calculations near the peak of the layer. The coefficients were however modified in two ways for the present purposes:

(1) The highest frequency has been limited to .98f_c, although the five-point Kelso coefficients give an upper frequency of .988f_c at the equator. Measurements nearer the critical frequency do improve the theoretical accuracy of the calculations, but the experimental errors are greatly increased by slight uncertainties in the critical frequency and hence in the reading frequency. A fixed upper limit of .98f_c appears a reasonable compromise.

(2) A fixed series of reading points is used under all conditions. This enables a single transparent scale to be used with all records, and permits interpolation between the different sets of coefficients given in table 1 to obtain coefficients for intermediate values of I and of $f_c/f_{H^{\bullet}}$

The coefficients labelled $h_{\rm m}$ in table 1 give the factors by which the five measured virtual heights are multiplied before being summed to give the height of the peak of the layer. Thus for I = 55° and $f_{\rm c}$ = $5f_{\rm H}$ we have

 $h_{\rm m}=.199h_1^{\prime}+.192h_2^{\prime}+.224h_3^{\prime}+.158h_4^{\prime}+.227h_5^{\prime}$ where h_1^{\prime} , h_2^{\prime} , h_3^{\prime} , h_4^{\prime} and h_5^{\prime} are the measured virtual heights at $f/f_{\rm c}=.15$, .44, .68, .87, and .98 respectively. Similarly the scale height at the peak of the layer is

 $H = -.015h_1' - .063h_2' + .061h_3' - .309h_4' + .326h_5'$ and the effective sub-peak thickness is

$$T = -.211h_1^{\dagger} - .101h_2^{\dagger} + .007h_3^{\dagger} + .091h_4^{\dagger} + .214h_5^{\dagger}.$$

The last five rows of coefficients in each set are used for obtaining the real heights of reflection at the measured frequencies. Thus the real height of reflection at $f = .68f_c$ is

$$h_3 = .307h_1^{\dagger} + .397h_2^{\dagger} + .340h_3^{\dagger} - .054h_4^{\dagger} + .010h_5^{\dagger}$$

For single layer h'(f) records the accuracy obtained near the peak of the layer is similar to that from a lamination analysis using about 50 points. Because of the inclusion of a parabolic peak in the assumed form of the real height curve, the errors in h are much less than for a Kelso type analysis using 10 points. The accuracy with which the real heights of reflection are obtained varies considerably. At the lowest frequency (.15f_c) the accuracy is of course very poor, since there is no measure of the amount of ionization below this height. The accuracy increases rapidly at higher frequencies, becoming very good above 0.7f_c.

4.3. Coefficients for F Layer Calculations During the Day (Table 2)

In investigations of the day-time F layer, the presence of a large cusp on the h'(f) record greatly reduces the accuracy of real height calculations using a small number of points. This cusp is caused by the presence of the E layer, with a critical frequency of the order of one third of the critical frequency of the F layer. The coefficients of table 2 have been calculated to provide increased accuracy under these conditions. An additional reading point at $f = .35f_c$ is included to double the accuracy near the cusp. The virtual heights are measured at the six frequencies $.15f_c$, $.35f_c$, $.55f_c$, $.75f_c$, $.9f_c$ and $.98f_c$, where f_c is the critical frequency of the F layer. The tabulated coefficients are then used to obtain the values of h_m , H and T as before. Thus for a dip angle of 55° at $f_c = 6.5f_c$ we have

$$h_{m} = .186h_{1}^{1} + .098h_{2}^{1} + .183h_{3}^{1} + .202h_{4}^{1} + .100h_{5}^{1} + .231h_{6}^{1}$$

$$H = -.030h_1^{\bullet} + .034h_2^{\bullet} - .123h_3^{\bullet} + .134h_4^{\bullet} - .406h_5^{\bullet} + .390h_6^{\bullet}$$

and
$$T = -.222h_1^2 + .014h_2^2 - .185h_3^2 + .174h_4^3 - .021h_5^3 + .240h_6^3$$

The virtual height (h¹₂) at .35f_c will commonly be near the E layer cusp, but since the corresponding coefficients are only about half as large as the other coefficients, the errors caused by the cusp are no larger than for a 12 point Kelso type analysis.

Many day-time ionograms also show a second cusp, due to the F1 layer, at a frequency of about 1.4 times the critical frequency of the E layer. Errors caused by this cusp can also be reduced by the increased number of reading points in table 2. It is, however, desireable to avoid measuring virtual heights too near a cusp. To make this possible the frequencies in table 2 fall about half-way between the frequencies of table 1, over most of the frequency range. Cusps can therefore be avoided, in most cases, by choosing the appropriate table. To facilitate this a transparent scale with both the 5-point ratios for table 1 and the 6-point ratios for table 2 marked on it, in different colors, can be used for reading the ionograms. Table 2 should be used for most of the ionograms, but when this entails measuring a virtual height near a cusp the five virtual heights for table 1 should be measured instead.

In all cases where a measurement could be influenced by a cusp, the virtual height curve should be smoothed before the virtual height is measured. If this smoothing is carried out over a frequency range equal to the separation of the reading points, maintaining the same total area under the h'(f) curve, the errors caused by the cusp are considerably reduced.

4.4. Coefficients for F layer Calculations at Night (Table 3)

During the night, the E region ionization cannot be observed directly on normal $h^{\bullet}(f)$ records. Consequently the effect of this ionization is generally neglected when calculating the height and shape of the F layer. This neglect can cause quite large errors in the calculated height of the peak of the F layer, particularly near sunset, and even larger errors in the calculated values of scale height and sub-peak content. There are in fact an infinite number of real height curves, corresponding to different amounts of E region ionization, which would give the observed ordinary ray virtual height curve. The different real height curves will, however, give quite different values for the virtual height of the extraordinary ray (h_X^{\bullet}) at low frequencies. A single value of h_X^{\bullet} can therefore be used to resolve the ambiguity in the analysis of night-time ionograms, and give reasonably correct results for the height and shape of the F layer and the sub-peak electron content.

The coefficients of table 3 have been designed for this purpose. The virtual heights of the ordinary ray are measured at a series of frequencies similar to those used in table 1, except that the lowest frequency (f_1) is not allowed to fall below 1 Mc/s. The virtual height of the extraordinary ray is also measured, at the frequency f_x which is reflected at the same real height as the ordinary ray of frequency f_1 . The coefficients of table 3 then give the multiples of h_1^1 , h_2^1 , h_2^1 , h_3^1 , h_4^1 h and h_5^1 which must be summed to obtain h_n , H, T and the real heights of reflection.

To obtain the right correction for the underlying ionization the values of f_1 and f_x must not be changed as the critical frequency varies. Thus the first set of coefficients in table 3 are used for f_c/f_H between about 2.0 and 5.5, at dip angles of up to 10 degrees. As f_c varies the values of f_2 , f_3 , f_4 and f_5 vary in proportion, but the values f_1 = 1.0 f_H and f_x = 1.62 f_H must not be altered. Because of this restriction the errors due to using the nearest set of coefficients can become much larger than the figure of 1% given for tables 1 and 2. For accuract calculations at any station a set of coefficients calculated for that station should therefore be obtained from the author.

5. Conclusions

The coefficients of tables 1, 2 and 3 were calculated on an IBM 1620 computer using eight significant figures throughout. The calculation and printing of each set of coefficients takes about five minutes using a twelve point integration relation. The coefficients are correctly rounded to four decimal places, giving an overall accuracy of about 2 parts in 10⁴.

Coefficients are given for a range of values of I, f_c and f_H such that ionograms taken anywhere in the world can be analysed with a maximum error, through using the nearest set of coefficients, of about 2 kilometres. The coefficients are calculated by assuming a mathematical model for the real height curve, consisting of a parabolic layer plus a correcting polynomial. This enables a very accurate fit to the peak of any normal ionospheric layer and, since the polynomial used is of the lowest possible degree, provides the smoothest real height curve consistent with the observations. The accuracy of the results obtained when analysing a single-layer ionogram is therefore very high, since a normal, smooth virtual height curve implies a very smooth real height curve.

The accuracy of the coefficients was tested using some highly accurate h'(f) curves calculated by Professor W. Becker for parabolic and cosine layers. These curves have a critical frequency of 6Mc/s and were given for $f_H = 1.20$ Mc/s at $I = 29^{\circ}$ and for $f_H = 1.18$ Mc/s at $I = 67^{\circ}$. Coefficients of the form used in table 1 were calculated for these conditions and used to analyse the h'(f) curves for the parabolic layer. The resulting values of h_m , H, T and the real heights of reflection were almost exactly correct, the mean error being less than 1 part in 10° and the maximum error in any quantity less than 2 parts in 10° . This is equal to the rounding off error in the printed coefficients, and demonstrates their basic accuracy.

The virtual height curve for the cosine layer provides a more realistic test, since this layer has a point of inflection at 1.5 Mc/s, a peak which is not parabolic, and cannot be represented by a finite polynomial. The errors in the real heights and in the values of h_n , H and T calculated using the 5-point coefficients at $I = 67^{\circ}$ are shown in table 4. The errors obtained at $I = 29^{\circ}$ differ by less than 0.1 km from those at $I = 67^{\circ}$, showing that the same parabola-plus-polynomial representation of the cosine layer is obtained at both dip angles. The only significant error is at the lowest frequency. The 4.6 km error at this point is caused by the low-density ionization in the cosine layer, which gives a difference of 14.5 km in the real and virtual heights at 0.9Mc/s.

The real heights of the cosine layer were also calculated using a 30 point lamination analysis, with a parabolic peak fitted through the last three calculated heights. The analysis was started from 0.9 Mc/s, and the errors in the calculated heights are shown in table 4. It is seen that for determining the height and shape of the peak of this layer, the five-point analysis is an order of magnitude more accurate than the 30 point lamination analysis. It also provides a much better e-timate of h than the 5 and 10 point Kelso-Schmerling coefficients, the results of which are shown at the bottom of table 4.

The accuracy attainable in practice will generally be limited by the ionograms. The precautions necessary to obtain consistent results from ionograms with incomplete or obscured traces are similar to those required by most other methods of analysis. They have been discussed by Piggott and Rawer (1961), and chapter S2 of this reference should be studied before any analysis program is undertaken.

This work was carried out under NASA research grant number NsG-54-60 to the University of Auckland. I am grateful to Mr W. R. Piggot for suggestions which increased the practical value of the tables.

6. REFERENCES

- Budden, K. G. (1954), A method for determining the variation of the electron density with height (N(h) curves) from curves of equivalent height versus frequency h'(f), Rep. Cambridge Conf. Ionospheric Physics (Phys. Soc. London), 332-339.
- Knecht, R. W., T.E. Van Zandt and J. M. Watts (1962), The NASA fixed frequency topside sounder program, from Electron density profiles in the ionosphere and exosphere (ed. B. Maehlum), Pergamon Press, 246-260.
- Piggot, R. W. and K. Rawer (1961), URSI Handbook of ionogram interpretation and reduction (Elsevier), 104-162.
- Schmerling E. R. and C. A. Ventrice (1959), Coefficients for the rapid reduction of h*-f records to N-h profiles without computing aids, J. Atmospheric Terrest. Phys. 14, 249-261.
- Shinn, D. H. and H. A. Whale (1952), Group velocities and group heights from the magneto-ionic theory, J. Atmospheric Terrest. Phys. 2, 85-105.
- Thomas, J. O. (1959), The distribution of electrons in the ionosphere, Proc.

 IRE 47, 162-175.
- Titheridge, J. E. (1959), The determination of the electron density in the ionosphere, Ph.D. thesis, University of Cambridge, 59-80
- Titheridge, J. E. (1961), A new method for the analysis of ionospheric h'(f) records, J. Atmospheric Terrest. Phys. 21, 1-12.
- Titheridge, J. E. (1965), The polynomial analysis of ionospheric h'(f) records, Radio Science, this issue.
- Unz, H. (1961), A solution of the integral equation $h'(f) = \int \mu'(f; f_0) dz(f_0)$,

 J. Atmospheric Terrest. Phys. 21, 40-45.

Table 4. The errors (in kilometres) in the calculated heights of the cosine layer at $f_H = 1.18$ Mc/s and $I = 67^{\circ}$.

Frequency in megacycles	0.90	2.64	4.08	5•22	5.88	$\mathbf{h}_{\mathtt{m}}$	Н	T
Virtual height in kilometres	133.6	199.3	268.2	360.8	552. 2			
Real height in kilometres	119.1	158.0	195.2	234•4	274.5	300.0	64.4	100.0
Error in value calculated								
from 5-point coefficients	+4.6	+1 •1	+0.6	+0.5	+0.5	+0.7	+0.1	- 0.2
Error in value from 30-	•							
point lamination analysis	+14.5	+4.1	+2.7	+2•4	+5•1	+8.0	+7.8	
5-pt Schmerling coefficients								
10-pt Schmerling coef icients -5.6								

Figure 1. The effect of the magnetic field on the calculated heights of a parabolic layer. The virtual height curve corresponding to a parabolic layer at the equator was analysed using coefficients calculated for different magnetic dip angles and different values of $f_{\rm c}/f_{\rm H}$. The amount by which the calculated heights (at $f=0.9f_{\rm c}$) were less than the true height of the parabolic layer is shown as a percentage of the true height. The circles show the values of $f_{\rm c}/f_{\rm H}$ and of dip angle for which coefficients are given in table 1.

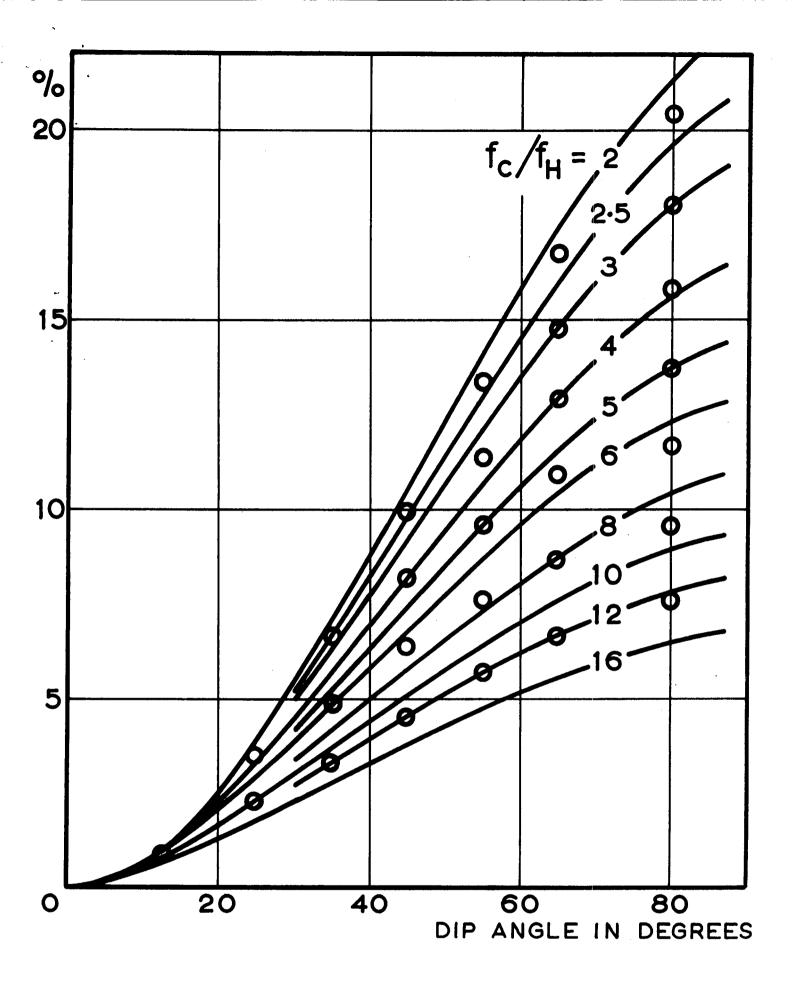


FIGURE 1. THE EFFECT OF THE MAGNETIC FIELD ON THE CALCULATED HEIGHTS OF A PARABOLIC LAYER. The virtual height curve corresponding to a parabolic layer at the equator was analysed using coefficients calculated for different magnetic dip angles and different values of $f_{\rm c}/f_{\rm H}$. The amount by which the calculated heights (at $f=0.9f_{\rm c}$) were less than the true height of the parabolic layer is shown as a percentage of the true height. The circles show the values of $f_{\rm c}/f_{\rm H}$ and of dip angle for which coefficients are given in table 1.

Table 1. Five-point coefficients for calculating the height of the peak, the scale height at the peak, the slab thickness and the real heights of reflection of ionospheric layers with critical frequencies between 1.6f_H and 16f_H.

with	critica	l freque	ncies be	tween 1.	of _H and
	· DIP =	13 DEGR		C = 8.0	FH
F/FC =	150 1928	- 440	<u> </u>	- 870	.980 .3172
THM	1928	1/43	. 4443	.0933	.3172
H T	0081	- 0901 - 1217	- 1440 - 0078	- 4880 0055	4422 3007
: 150	- 1923 1- 2211	- 4350	3883	- 2267	0522
- 150 - 440 - 680	`. 5000	5734	-, 1121	10487	0101
680	2886	. 3626	.3902	0510	0096
.0/0	.2276	.2145	.3027	2679	0128
.980	. 1970	2074	. 1741	.2/68	1447
	DIP =	25 DEGRI	EES. F	C = 3.0	FH
F/FC =	150	440	680	870	1980
HM	~ 1966	. 1807 ·	. 2254	.0997	2976
H	0100	- 0862 - 1154	1304	4503 0174	. 4160 . 2819
_T150	- 1970 1.2277	 4479	4016	-, 2354	0541
440	5148	5580	- 1112	. 0483	0099
680	2972	.5580 .3700	.3730 .3033	-, 0496	. 0093
. 870	2972 2328	, 2228	.3033	.2532 .2687	0121
.980	.2016	2125	. 1818	. 2687	. 1354
				•	
	DIP =	25 DEGRE	EES. FO	= 10.0	FH
F/FC =	150	25 DEGRE - 440 - 1770	. 680 ·	.870	.980
HM	. 1933 0095	: 1770	, 2222	.870 .1063 4553	3012
Ĥ	0095	 ∵ UO 40	. 1276	4553	4220
T 150	- 1953	- 1188	.0068 .4069	- 2386	2854
.150 .440	1.2290 .5076	- 4520 - 5676 - 3690 - 2172	- 1150	0502	0103
: 680	. 2909	3690	3821	0518	0098
_870	2287	2172	.3082	2584	-,0125
.980	. 1981	2082	. 1800	2771	. 1366
	nie -	35 DEGRE	FS FO	- 25	FH
F/FC =	150	35 DEGRE		870 - 2.5	.980
THM	2002	1876	2280	. 1107	2735
H	0122	0804	. 1115	- 4030	3841
T	- 2027 1 2368	- 1084 - 4665	0177	0348 - 2488	2587
.150 .440	5316	5411	-: 4217 -: 1112	0484	0568
1680	.5316 .3061 .2379	.5411 .3793	3540	-, 0485	0091
.870	2379	. 2315	. 306 1	12359	-,0113
.980	2060	.2174	. 19 13	.2615	1238
	DIP =	35 DEGRE	ES. FO	= 6.0	FH
F/FC =	150	440	.680	.870°	.980
HM	1955	. 1823	. 2241	1195	. 2786
Ĥ	0114	- 0788	1080	-: 4103	.3925
	2003 1.2389	- 1135 - 4729	0094 4299	0408 - 2536	.2636 .0577
440	5214	5546	- 1167	.0512	0104
2680	. 2971	5546 3783	3665	- 0516	.0097
. 870	23 19	. 2239	.3130	. 2432	- 0119
.980	2010	.2114	. 189 1	.2729	. 1256
	DIP -	35 DEGRE	ES, FO	= 12.0	FH
F/FC =	150	<u>, 440</u>	<u> </u>	<u>. 870</u>	.980
HM H	1935	1791	2197	1216	.2860 .4033
7 7	0106 1977	0790 1159	.1115	4252 . 0399	2709
150	1, 2380	-, 4711	4272	-, 2511	. 0570
. 44 0	.5127	5643	- 1183	.0517	-, 0105
,680	. 2920	3737 2178	.3778	0536	.0100
.870 .980	. 2293 . 1987	2082	3142 1837	.2512 .2806	0125 1288
.900	. 1907	. 2002	. 1037	. 2000	. 1200
	DIP =	45 DEGRE	ES, FC	= 2.4	FH
F/FC =	150	. 440	1680	.870	980 2445
HM	2035	. 1950 - 0728	.2300 .0870	. 1271 3459	3462
		-, U/ 40	.00/0	2727 2587	2207
T	0147 - 2095	- ~ 1005	10205	U50 /	. / 311/
T	-, 2095 1, 2497	- ~ 1005	0205 45 2 4	.0587 2694	2307
T	-, 2095 1, 2497	- ~ 1005	4524 - 1122	2694 0490	.0609 0099
150 440 680	2095 1.2497 .5502 .3150	- 1005 - 4936 - 5229	4524 - 1122 3339	2694 - 0490 0483	0609 0099
T	-, 2095 1, 2497	- ~ 1005	.0205 .4524 1122 .3339 .3113 .2023	2694 0490	.0609 0099

```
FC = 4.0 FH
.870 .9
                                                                      .980
.2496
.3544
.2357
 F/FC =
                                                         . 1346
   HM
                                             2268
                                                       - 3536
- 0636
- 2738
                                             0847
0133
4600
   Н
   T
                             4996
5356
3896
2334
2166
   .150
                                                                     -:0104
                                           1174
3454
3175
2004
                                                       0516
- 0510
2232
2661
   680
                                                                     .0095
-.0111
   .870
                2054
                                                                       .1115
   .980
                150
1960
- 0129
                                                                      980
2573
3659
2432
0613
 F/FC =
   Н
               2041
   Т
             1.2518
.5300
.2994
.2330
                           -.5006
5482
3855
2258
   .150
.440
                                                                      -.0107
                                          3587
                                                       - 0536
2320
                                                                      .0100
   .680
   .870
                                           3209
                                                                     -; 01 17
               .2020
                                                                      . 1148
                             .2119
                                           . 1954
   .980
                                                         . 2759
                .1384
              . 150
. 1940
                                                                      .980
.2685
 F/FC =
             -.0118
                                                      - 3909
0600
                                                                     3814
2540
.0595
                                         0939
- 0014
4506
                           -.0726
  Н
                          - 1122
- 4928
- 5598
- 3789
- 2189
             - 2004
1.2482
                                                       - 2655
0532
   150
                                         4506
- 1215
3724
- 3205
              5 19 1
2938
2303
1996
                                                                     -.0107
                                                      - 0554
                                                                     .0103
   .680
  .870
                                                                     -.0123
                                                         2841
   .980
                                           1880
                             2085
                                                                      .1199
                DIP = 55 DEGREES.
150 440 680
                                                   FC =
                                                             2.3 FH
            150
2070
- 0172
                                                      870
1462
- 2842
0863
                           .440
.2029
-.0641
                                                                      980
2126
3048
2000
F/FC
                                          2313
  HM
  Н
               2169
                           - 0911
- 5278
                                            0217
                                        - 1131
- 1135
- 3135
- 3173
- 2134
                                                                      0658
             1,2660
                                                          2964
              .5702
.3245
.2479
.2147
                            5032
4016
2489
                                                        .0494
    440
                                                                    - 0097
  680
                                                      -.0486
                                                        . 1958
. 2511
                                                                    -.0098
  870
  .980
                            .2269
                                                                      .0939
                3.5 FH

.870 .9

.1535 .2

-.2954 .3

.0902 .2
                                                  FC =
                                                                     .980
.2194
.3153
              . 150
. 2019
F/FC =
            -.0161
-.2140
  Н
                                                                      2066
  T
            1.2677
.5586
.3147
.2414
                                                                    .0664
-.0103
                                                      - 2998

- 0523

- 0515

- 2041

- 2625
  150
  .680
                                                                    .0095
-.0104
                                          .3239
.2110
  .870
                            .2208
  .980
              2091
                                                                      .0967
               5.0 FH

870 9

1575 2

-3094 3

-0910 2

-2986 0
                                                  FC =
                                                                     .980
.2270
.3264
.2140
.0659
            . 150
. 1987
-. 0151
F/FC =
  Н
            - 0151
- 2109
1 2676
5482
3074
2371
2056
                                        0071
4993
- 1223
  .150
                           .5309
.3970
.2339
.2159
                                                     0539
- 0539
2124
2718
                                                                    -.0106
                                         3396
3275
2068
  680
870
980
                                                                     .0099
                                                                    -.0109
                                                                      .0999
                                                     7.5 FH

870 9

1589 2

- 3297 3

- 0883 2

- 2923 0
             DIP = 55 DEGREES, FC = .150 .440 .680 .8
                                                                     .980
.2373
.3409
F/FC =
                         - 0640
- 1051
- 5287
- 5438
- 3913
- 2263
            -. 0140
-. 2071
1. 2649
                                          .0667
 Н
                                                                      2240
                                        <u>-, 0001</u>
 .150
                                                                    .0645
                                            49 16
                                        .4916
-- 1246
.3537
.3288
.2003
             5368
3008
2337
2027
                                                      0548
                                                                   -.0108
 .680
                                                     -.0561
                                                                   0103
- 0116
 .870
                                                       . 2227
 .980
                            .2117
                                                       .2808
                                                                     .1045
```

_	DIP =	55 DEGR 440	EES. F	C = 12.0	FH _
F/FC =	150	440	680	870	.980
HM H	1944 - 0128	. 1845 - 0662	.2148 .0768	. 1556 3570	.2507
Ϋ́	- 2031	- 1085	- 0059	. 0804	.3591 .2370
.150	1.2588	- 5152	4748	- 2803	.06 19
440	.5251	.5558 .3839	- 1248 3675	. 0547	0108
.680 .870	. 2953 . 2312	.3039 .2197	.30/5	0573 2346	0105 - 0122
.980	2004	2088	1920	2880	1108
•,,,-,	•	•====	• 1,7	•===	• • •
	D.D	((DECD	FEC F		En
F/FC =	150	66 DEGR	680	2.2 870	
HM	2109	2115	2328	.870 .1677	1771
H	0195	 0544	0329	- 2176 1175	.2586
150	- 2250	- 0800	0219	1175	1657 0715
150 440	1.2866 .5921	5707 4812	.5443 1132	33 17 . 0493	- 0094
680	.3350	.4131	. 2924	0495	.0089
.870	2535	. 2578	.3241	. 1736	0089
.980	.2194	.2321	. 2252	2468	.0765
	DIP =	66 DEGR	EES, FO	= 3.0	FH
F/FC =	· 150	.440 .2057	.680 .2303	870	.980
HM H	2058 - 0183	- 0544	.0331	. 1737 - 2299	. 1845 . 2695
T	2220	-, 0862	. 0154	 2299	1728
.150	1, 2875	5747	5489	3333	.0716
440	5804	4962 4120	1188	0521	0099
870	.3252 2470	2504	.3054 .3302	0520 1819	.0094 0095
980	2139	2262	2230	2573	0796
				•	
	DIP =	66 DECDI	FEC FO	= 4.0	EH
F/FC =	150	Lilio	680	870	980
HM	2022	.2005	2270	1778	1925 2813
Ĥ.	0172	0545	0349	- 2445	.2813
	- 2187	- 09 14 - 5749	0088 5480	1205 - 3311	1807
<u> 440</u>	2 569 2	5101	- 1231	0543	- 0104
£680	.3170	. 4092	3 185	 0544	20098
.870	2421	. 2430 . 2209	3344	1906	0100 .0831
.980	.2099	.2209	.2193	. 2669	.0051
F/FC =	DIP =	66 DEGRI	EES FO	= 5.5	FH ≤980
HM HM	- 150 - 1991	1955	2225	.870 .1799	2029
Н -	- 0161	0551	10393	2642	. 2960
₹ •	- 2147	-, 0963	.0017	. 1185	1908
150 .440	1. 2843 . 5568	 5700 5246	.54 0 6 1265	3246 .0558	.0697 0107
680	3093	4043	3330	0567	.0102
.870	£2379	. 2350	:3368	. 200 9	0106
.980	.2064	2159	.2135	. 2765	.0877
				÷	
E 150	DIP =	66 DEGRE	EES, FO	8.0	FH
F/FC == HM	. 150 . 1966	1907		.870 .1790	.980 .2168
Н •	- 0149	- , 0567	0478	- 2914	.3153
т.	-,2102	 1008	0056	. 1123	2043
.150 .440	1.2786	5578 .5394	5244 - 1285	- 3125	.0673 01 0 9
.440	.5434 .3022	.3970	3489	.0566 0586	.0105
.870	2345	2268	.3365	.2137	0114
.980	. 2034	2116	. 2050	. 2859	.0941
	DIP =	66 DEGRE	ES FC	= 12.0	FH
F/FC =	150	440	680	.870	. 980
HM _	. 1948	1869	2119	. 1738 3233	.2326
H -	0137 2057	0597 1047	0602 - 0109	- 3233 1016	.3365 .2197
. 150	1,2699	- 5390	. 5012	-, 2962	. 0640
440	5309	5521 3885	- 1284	.0563	 0109
.680 870	. 2967 . 2319	.3885 .2199	3635	0594 2271	.0107 0121
.870 .980	.2011	.2199 .2087	.3332 .1955	2931	1016
•) • •	1 1	. – 55 /	• • • • • •	• •	

```
FC = 2.2 FH

.870 .9

3 .1924 .1

4 -.1492 .2

5 .1527 .1

3 -.3775 .0
                  DIP = 80 DEGREES,
150 440 680
                                                                                 .980
.1387
.2081
                                .440
.2195
 F/FC
HM
                                                  .2353
               -.0207
                               -.0437
   Н
                                                                                  1285
0764
               -, 2331
1,3120
                                                 .0205
.6123
                               - 0686
   .150
.440
                               -.6232
                                                - 1139
- 2738
- 3334
                 .6132
.3439
.2577
                                                                0492
- 0515
1516
                                  . 4603
                                                                                 -. 0087
   .680
                                                                                0088
                                 4249
2652
   .870
                                                                                  .0578
                 .2231
                                                  . 2380
                                                                  . 2449
                                  . 236 1
   .980
                  1486
2226
                .150
.2082
F/FC =
                               -.0442
                                                  .0071
   Н
               -.0193
                                                                -. 1661
                 2287
                               - 0767
- 6251
                                                 .0134
.6116
                                                                  1538
3739
   Ŧ
                                                                                    1382
  150
440
680
                                                                               .0758
-.0094
               1,3116
                                                - 1208
2902
                .5975
.3315
.2499
                                 4800
4233
2563
                                                                 0527
                                                               -. 0543
                                                                               .0093
                                                                 . 1621
   .870
                                                 3403
                                                                                -. 0086
   980
                  2166
                                 .2492
                                                  2350
                                                                  2571
                                                                                  . 0621
              DIP = 80 DEGREES, 150 .440 .680 .2045 .2070 .2289 .0070 .2289 .0070 .2245 .00828 .0070 .2245 .00828 .0070 .2245 .4961 .1254 .3224 .4201 .3044 .2448 .2485 .3441 .2125 .2238 .2306
                                                          3.9 FH
                                                                                 .980
.1582
.2363
.1476
F/FC =
                                                               - 1832
1527
- 3666
   Н
   T
  150
440
680
                                                               .0550
-.0566
.1717
.2666
                                                                                -.0099
                                                                                  .0097
  .870
.980
                                                                                -, 0091
                                                                                  .0664
                  DIP = 80 DEGREES | 150 .440 .680 | 2020 .2023 .2243 | 2243 | 2204 - .0878 .0008 | 3057 - .6130 .5912
                                                          FC = 5.0 FH

.870 .9

3 .2027 .1

2 - 2024 .2

8 .1496 .1
              150
2020
-0173
-2204
1.3057
5723
3154
2413
                                                                                 .980
.1687
.2512
F/FC =
  Н
                                                                 1496
3569
                                                                                  1579
.0731
                                                5912
- 1287
- 3174
- 3456
- 2247
  . 150
                                .5101
.4156
.2413
                                                               0566
-- 0585
-- 1815
  .440
                                                                                -.0103
  680
870
                                                                               0101
- 0097
  .980
                 .2096
                                                                                 .0711
                                 2193
                                                                 .2752
                FC = 6.5 FH

.870 .9

5 .2022
                                                                                .980
.1818
.2695
.1707
F/FC =
              1998
-- 0165
  HM
                                                               -. 2266
  Н
                                                                 1441
  T
              -. 2165
             1.2990
.5608
.3095
.2385
.2072
                                                               -.3453
.0581
                                               -. 1315
  . 150
. 440
                                                                               -.0107
                                                               -.0602
  .680
870
                                                                               0105
                                                                 .1930
.2840
                                                                               -.0105
  .980
                                                                                 .0771
                  870 9

1984 2

-2624 2

1336 1

-3299 0

0594 -0

2088 -0
             150
1971
-. 0155
-. 2122
                                                                               2980
2007
2954
1890
0691
- 0111
F/FC -
 HM
 Н
                                              - 0127
- 5515
- 1340
- 3466
- 3418
  Ŧ
 .150
.440
               1.2885
               5479
3036
2353
2042
 .680
.870
                                                                               -0108
-0114
                                .2106
                                                                 2940
                                                                                 .0858
                                                2055
  .980
             DIP = 80 DEGREES F

150 440 680

1945 1874 2064

- 0144 - 0541 0479

- 2083 - 1020 - 0179

1 2782 - 5597 5289

5361 5501 - 1341

2981 3906 3622

2321 2180 3375

2011 2071 1949
                                                         .980
.2210
.3227
.2087
.0665
F/FC =
 ΉM
 Н
 .150
.440
                                                              0591
- 0618
2246
                                                                                -.0112
 680
                                                                               .0109
 .870
.980
                                                                              -.0122
                                                                 .3015
                                                                                 .0955
```

Table 2. Six-point coefficients for calculations on the daytime F layer, for critical frequencies between $2f_H$ and $20f_{H^{\bullet}}$.

	OTHIC P			rear tred	•	permeen
E / E C	DIP =	13 DEGR	REES, F		FH	-000
F/FC =	. 150 . 1761	.350 .1129	.550 .1409	.750 2294	-900 -0137	.980 .3271
H	- 0367	.0617	1770	2471	- 6247	570 6
T	- , 2072	.0095	- 1770 - 1980	. 1680	~ 1012	3288 - 0784
.150	1, 4073	8152	:7163	5399	.3100	0784
.350	6242	.3390 .2175	0829	- 0855	.0532	0130
.550 .750	3557 2619	21/5	5157 3792	- 1470 2721	.0772	0190
.900	2082	.0941 1032	2156	2416	0070 2479	- 0003 - 0165
.980	1903	09 19	2042	1469	2436	1230
•) • •	• . , , ,	• • • • • • •	•	• • • • •		
r tro	DIP =	25 DEGR		C = 4.0	FH	-0-
F/FC =		350	\$50	750	900	.980
H	- 0358	.1116	- 1515 - 1669	2254	.0256 5780	.3060
Ÿ	- 2114	0106	- 1913	1718	0888	4976 3091
. 150	1,4191	8412	7413	- 5610	13234	- 0816
	. 6422	. 3167	0905 5031 3852 2253	- 0917	. 0570	0147
.550 .550	.3653 2672	.2211	5031	- 1488	.0787	0194
• / 50	2123	0982 1039	2253	2547 2382	- 0043 2364	- 0009 - 0162
.900 .980	1939	.0927	2114	1498	.2364 .2380	1143
• 500	• 1323	• 45~1		• 1-190	. 2000	• • • • •
				=		
	DIP =	25 DEGR	EES F	C = 14.0 .750	FH	-0-
F/FC =	150	350	1550	750	.900	980
HM H	. 1773 0353	1099	- 1473 - 1667	. 2242	.0308	.3105
ï		1099 0566 0097	 1965	2252 1676	- 5858 - 0852	.5060 .3136
150	1 4200	0400	7489	- 5680	3271	-, 0823
350	6333 3581	3285	0859	- 0880	0555	- 0143
.550	. 3581	.2207	: 5123	- 1513 2630	0555 0798	0196
.750	2631 2091	0933	.3871	. 2630	-, 006 1	- 0005
.900 .980	.1911	1017	2201 2069	2443 1497	2414 2458	- 0166 1157
.900	. 1911	.0908	. 2009	• 1 -19 /	. 4450	.115/
	DIP =	35 DEGR	EES. F	C = 3.0	FH	
F/FC =		.350	- 550	.750	1900	980
HM	1845 - 0347	. 1097	. 1646 1539	2199 2015	.0418 5193	2795
H T	034/	0487	1539 1839		5193	4578 2845
150	- 2167 1.4347	0125 - 8762	.7760	 5909	0727 3425	0861
350	461.6	2886	1007	- 1001	0623	- 0160
550	3771	2250	14886	-: 1519	.0811	- ≨0199
.750	2736	. 1025	.3931 .2370	. 2333	-, 0009	-, 00 17
.900	.3771 .2736 .2174	1046	.2370	2343 1532	2226	- : 0160
.980	. 1982	.0934	.2200	. 1532	.2319	1033
	DIP =	35 DEGR _350	EES. F	C = 7.0	FH	
F/FC =	: 150	350	550	- 750	1900	<u> </u>
HM	1808 - 0339	1072	11593	2190 1979 1718	.0491	, 2847
H T	0339	.0493	1535	1979	5273	4675
.150	- 2139 1.4381	0109 - 8864	- 1909 7898	- 6036	- 0675 3497	2896 - 0876
350	n = 4n	3034	0949	- 0968	0605	0155
.550	3672	. 2258	: 4998	1552	. 0827	- . 0202
.750	3672 2676	. 0966	3967 2310	. 2433	0030	0012
.900	2414/	1014	23 10	. 2428	2286	0165
.980	. 1941	.0906	2145	. 1542	2419	. 1047
	DIP =	35 DEGR	EES, F	C = 15.0	FH	
F/FC =	150	.350	. 550	.750 .2172	.900	<u> 1980</u>
HM H	. 1788 0340	.1067 .0514	1542	.2172 2031	- 0494	.2936 .4822
Ţ	- 2110	0101	1557 1946	1656	5470 0680	. 4822 . 2979
150	1,4352	8793	7822	- 5963	3441	- 0860
350	.6418	. 3 187	0888 5101	0923	.0577	- 0148
.550	3606	. 2229	5101	1560	. 0826	-,0201
.750	2646	.0921	404h	2547	0052	0007
.900 .980	2102 1921	1003	2240 2100	. 2466 . 1510	2358 2495	- 0169 1080
•300	. 1741	.0894	. 2 100	. 1510	כנד.	. 1000
•-·	DIP =	45 DEGRI	EES, FO	3.0	FH	_
F/FC =	<u>~ 150</u>	.350	.550 .1789	750 2122	.900	- 980
HM	. 1886	. 1062	1789	. 2122	.0659	.2482
H T	- 0330 - 2225	0398	- 1372 - 1782	. 1673 1805	- 4483 - 0502	4115 2556
150	1.4570	- 9289	. 8311	- 6400	3739	- 0932
350	. 6889	2576	1129	-: 1112	. 0694	0177
.350 .550	. 3880	9289 .2576 .2296	4/59	 158 j	.0855	- 0177 - 0209
./50	2791	* 105±	4050	2104	.0027	0025
.900 .980	2216 2016	.1041 .0931	. 2493 . 2286	. 233 1 . 1577	.2080 .2292	- 0160 0898
. 300	. 2010	ا روں ،		• 17//	• 7 4	• 0090

```
DIP = 45 DEGREES, 150 .350 .550 .1850 .1038 .1739 .0323 .0407 -.1376 .2107 .0131 -.1848
                                                                                         5.0 FH
.750 .9
                                                                                FC =
                                                                                                                                     .980
.2539
.4218
.2611
                                                                                                               900

0719

4582

0461

3798

0673

0867

0006

2140

2385
                       . 150
. 1850
  F/FC
     HM
                                                                                          1655
1764
6508
    Н
                     -.0323
                    - 0323
- 2197
1.4601
-6779
-3784
-2733
-2171
                                             0131
9378
2725
2303
0998
     . 150
                                                                    .8431
                                                                                                                                   -. 0944
-. 0171
                                                                    1070
4866
4080
2436
                                                                                       - 1076
- 1609
2203
2408
1583
     .350
    .550
.750
                                                                                                                                   - 0211
                                                                                                                                   - 0021
- 0164
- 0916
     .900
                                              1010
     .980
                                              .0904
                                                                    2235
                        . 1977
                                                                                         9.0 FH
750 9
2098 0
1697 - 4
1692 - 0
                          DIP = 45 DEGREES,

150 .350 .550

1822 .1026 .1676

0321 .0431 -.1397

2160 .0117 -.1901
                                                                                 FC =
                                                                                                                                  .980
.2639
.4386
.2705
-.0929
-.0162
                                                                                                            900
0739
-- 4795
-- 0453
3753
0636
0868
                      150
 F/FC =
    HM
                                                                 - 1397
- 1901
- 8389
                    - 0321
- 2160
   Н
    T
                    1.4584
.6633
.3692
.2688
.2135
.1949
   . 150
                                             9335
2920
2281
                                                                                      - 1016
- 1623
- 2339
- 2466
                                                                   0988
4992
4071
    .350
    .550
.750
                                                                                                                                   -. 0210
-. 0015
                                             0938
0989
0883
                                                                                                              - 0021
2225
2483
    .900
                                                                    2354
2177
                                                                                                                                   -.0170
                                                                                                                                      .0952
    .980
                                                                                            1556
                                         45 DEGREES

350 550

1034 1612

0463 - 1443

0105 - 1926

- 9130 8161
                                                                                 FC = 16.0 FH
                          DIP -
                                                                                     750
2095
1805
1626
-6250
-0953
-1609
2492
1518
                    150
1803
- 0325
- 2126
                                                                                                           .0693
-.5079
-.0496
                                                                                                                                     .980
.2763
.4579
.2819
F/FC =
   H
T
                                             9130
3100
2247
0904
0988
0880
                      4501
6496
3627
2659
2112
                                                                                                                                  - 0893
- 0151
- 0206
- 0009
- 0172
   . 150
                                                                                                            3611
0596
0853
- 0047
2307
2543
   .350
.550
.750
                                                                   09 13
5088
40 19
2273
2128
   .900
.980
                       1930
                                           55 DEGREES,
.350 .550
.1018 .1948
.0306 -.1190
.0181 -.1736
-.9954 .9019
                                                                                    FC =
                             DIP =
                                                                                                    3.0 FH
                                                                                                                                     .980
.2142
.3620
                                                                                                            .900
.0942
-.3727
                                                                                        750
2023
1302
1850
- 7039
                      150
1927
-.0310
 F/FC =
    H
                                                                                                                                     2245
                     - 2288
1.4846
                                                                                                               0252
4149
0786
                                             - 9954
- 2236
- 2330
   . 150
. 350
                                                                   1281
4653
4188
2622
2381
                                                                                      - 1254
- 1668
- 1863
                                                                                                                                  - 0197
- 0220
- 0035
- 0162
                       .7148
    .350
.550
.750
                      3992
2847
                                                                                                               0914
                                             1069
                       .2257
                                                                                         23 19
16 12
   .900
                                                                                                                1937
2287
                       2051
                                              09 19
     980
                                                                                                                                      0751
                                      = 55 DEGREES,
.350 .550
.0997 .1895
.0319 -.1202
.0162 -.1797
                                                                                                _4.3 FH
                                                                                    FC =
                                                                                      750
2022
1304
1808
-7108
-1209
-1687
                                                                                                            900
0985
- 3852
- 0223
                                                                                                                                    .980
.2209
.3735
.2309
.1025
                   150
1892
- 0304
- 2258
F/FC
HM
                                            03 19
0162
1: 00 11
   Н
                                                                   1797
19099
1214
    Ŧ
                     1,4865
7031
   - 150
- 350
                                                                                                                  4180
                                                                                                               . 4180
: 0759
                                             2395
2338
                                                                                                                                   -0190
                      3896
2790
                                                                   4754
4209
2565
                                                                                                               0920
   .550
.750
                                                                                                                                   - 0221
- 0030
                                             . 1018
                                                                                         1967
2390
                                                                                                                0046
   .900
                       . 2213
                                             .0998
.0893
                                                                                                                1999
2374
                                                                                                                                  -.0166
.0773
   .980
                                                                                          . 1615
                       .2014
                           01P = 55 DEGREES,

150 350 550

1862 0984 1828

3302 0342 - 1226

2220 0144 - 1852

1849 - 9968 9057

1884 2596 1124

18793 2328 4873

2740 0959 4205

275 0976 2484

1982 0872 2271
                                                                                   FC = 6.
.750
.2015
.1344
.1741
-.7059
-.1141
                                                                                                  6.5 FH
                                                                                                                                 .980
.2307
.3898
.2400
-.1010
-.0179
                   150
1862
-- 0302
-- 2220
1.4849
                                                                                                            900
1004
-- 4056
F/FC
HM
   Н
                                                                                                               0213
4131
0716
  .150
.350
                     - 1697
2101
2455
                                                                                                              09 18
00 18
2080
2467
                                                                                                                                 - 0220
- 0024
- 0170
   .550
                      2/40
2175
1982
                                            0959
0976
0872
   .750
   .900
                                                                                         . 1599
                                                                   . 2271
                                                                                                                                     .0809
   .980
                           DIP = 55 DEGREES,

150 350 550

1839 0985 1759

1840 0373 - 1265

181 0127 - 1887
                                                                                   FC = 10.0 FH
                                                                                                                                2431
4093
2513
-0975
-0167
-0216
-0017
                                                                                                           900
- 978
- 4329
- 0238
- 3994
- 0667
- 0905
- 0011
2165
                                                                                         .750
.2009
.1432
.1666
                      150
1839
0304
2181
F/FC
HM
  Н
                                                                                    - 6865
- 1064
- 1688
- 2246
  .150
.350
.550
.750
                    1.4780
                                            9790
2805
                                                                  8856
1029
4983
4166
                     6730
3716
2703
2146
                                            2300
                                            .0914
.0967
.0863
                                                                                                                                 -.0017
                                                                  2396
2212
                                                                                        . 2498
                                                                                                              2165
2542
  .900
                                                                                                                                  -.0173
                                                                                        . 1566
                                                                                                                                    .0857
   .980
                      . 1959
```

	0.10	55 DE/	TO CEC	50 1/	- PI	ta
F/FC =	· .150	= 55 DEC	GREES,	.750	.900	~980
HM	. 1818	. 1000	. 1685	2017 1577	: 0897	0.503
Н Т	0310 2144	.0412	1327 1906	1598	4677 0310	4326 2652
: 150	1.4657	- 9484	.8518	6557	£3793	0927
.350 .550	.6577 .3651	.3007 .2266	.0939	0987 1660	06 18 0882	0155 0211
.750	.3651 .2674	.0889	5072 4095	2394 2516	- 0040	-,0011
.900 .980	. 2123 . 1940	.0973 .0865	. 2309 . 2159	. 2516 . 1524	2255 2592	0175 .0920
•,,,,,	• • • • • • • • • • • • • • • • • • • •	• 0000	• = • > >	• • • •	•	•0920
	DIP	= 66 DEG	REES.	FC = 2.	7 ₹ H	
-	: 150	350	- 55N	750 °	1900	.980
HM H	- 0289	.0973 .0207	0988	- 1904 - 0907	1248 - 2876	1748 3039
T	1985 - 0289 - 2369	0239	- 16/0	- 10 10	. 0006	. 1884
150 - 350	1.5167 .7470	-1.0750 -1794	.9866 1408	1455	4662 0916	- 1119 - 0224
350 550 750	- 41ka	12343	4529	1455 1776 1566	0989 0125	0233
.750 .900	2929 2318	. 1092 . 1016	4529 4336 2780	- 1566 2275	.0125 .1775	- 0047 - 0163
.980	2102	.0910	2505	. 2275 . 1633	2269	.0581
E /E6	DIP	= 66 DEG	REES,			- 00
F/FC =	150 1943	.350 .0951	.550 .2078	.750 1914	1284	.980 .1831
Н	0283	.0951 .0224	-, 1009	. 0923	-,3033	.3179 .1962
<u>1</u>	- 2332 1.5180	.0211 -1.0786	- 1746 9925	1873 - 7871	-0032 -4671	- 1962 - 1118
.350	.7331	1989	. 1409	- 1391	0876	: 0214
.550 .750	. 4033 . 2860	. 2363 . 1038	4636 4356	1788 . 1689	0988	- 0232 - 0041
.900	2265	0985 0881	. 2715	. 2358	1844	-, 0167
.980	2057	.0881	. 2446	1643	. 2361	0611
F/FC =	DIP • 	= 66 DEG _350	REES, 550	FC = 5.0	0 FH .900	.980
HM	1912 - 0281	0937 0246	2012 - 1035	. 1915 . 0961	1208	1926 3334
H T	0281 2294	.0246 .0188	 1035 1799	.0961	- 3226 0043	.3334 .2049
:150	1.5165	-1.0741	.9879	7814	4615	1103
.350 .550	.7186 .3932	2192 2364	.1312 .4742	1315 - 1701	0828	- 0202 - 0230
.750	₄ 2807	. 0985	. 4350	- 1791 - 1818	.0070	-: 0035
.900 .980	. 2225 . 2024	.0962	. 2642	2425 1636	. 19 17 . 2446	- 0170 0646
•) • •	•=02 ·	•0000	. 2,00	• 1050		•00 10
	DIP =	- 66 DEG	REES.	FC = 7.0) FH	
F/FC =	. 150	.350	.550 .1934	.750	.900	.980 .2051
HM ***	1883 - 0282	.0933	- . 1072	. 1914 . 1036 : 1736	1284 - 3491	3533
T 150	 2251	.0164	1843	1736 - 7635	0030 4482	3533 2164
.150 .350	.7020	-1.0582 -2424	.9700 .1198	1223	.0769	- 1072 - 0188
. 550	.3835 .2761	. 2351 . 0933	. 4855	-, 1784	: 0969	- 0227 - 0028
.750 .900	.2190	. 09 47	4328 2550	1969 2482	.0037 .2003	- 0173
.980	. 1996	0846	.2550 .2321	. 16 13	2529	0694
		D.T.				
F/FC =	DIP =	66 DEGI	~ 55D	FC = 10.0 .750	~ 900	.980
HM	: 1859	. 0941	1853	. 19 17	1232	.980 .2198
H T	0285 2209	.0310	- 1123 - 1871	1153 1654	- 3817 - 0013	.3762 .2297
: 150	1.5000 -	1.0306	9394	- 7345	4283	1025
.350 .550	.6852 .3753	. 2656 . 2324	4959	- 1128 - 1762	.0708 .0948	0174 0222
.750	2723	.0894	1085 4959 4270 2452	2130	0004	0021
.900 .980	2161 1972	09 45 08 42	2452 2256	2522 1578	2096 2598	0176 .0753
4 2 - 4	· ••	<u> </u>				100
_ •	DIP =	66 DEGR	REES,	FC = 15.0		_
F/FC =	. 150 . 1836	66 DEGR 350 -0961	1550 177∩	.750 1933	.900 .1133	.980 .2366
н	- 0293	.0354	- : 1195	. 13 19	- 4200	₹4015
150	- 2166 1.4840	0119 9915	- 1886 8966	6942	- 0093 4016	2450 - 0964
.350	.6681	200-	.097 9	1032	0646 0915	0159
.550 .750	3680 2690	2287 2287 20871	5053 4184	-: 1720	0030	- 0215 - 0013
. 900	2135	. 0955	2354	2544	2190	0177
.980	. 1952	.0847	.2196	. 1538	2644	.0824

						UB
	DIP	= 80 DEG	GREES.	FC = 2.	6 FH	
F/FC =	. 150	.350	550	.750	-900	. 98 0
HM	.2038	. 09 15	.550 .2349	.750 .1777	. 1600	.98 <u>0</u> .1320
H	0260	.0112	→ . 0772	.0498	1985	2406
1 1 1 2 2	- 2449	0310	- 1647	2008	0287	1490
.150	1.5541	-1, 1738	1.0938	8851	. 5324	1215
.350	.7795 .4291	1329	1750	- 1702 - 1920	1077	0250
.550	. 429 1	2346	4442 4516	1920	1085	0244
.750	2999	1093	45 16	1263	0189	0059
.900	2367	.0989	2946	2241	. 1620	0163
.980	2145	0885	. 2636	1654	. 2281	.0399
	nin	Oh ne	orre	FC - 2	9 60	
F/FC =	150	350	EEO.	FC = 3.	2 LU − 2 LU	.980
HM	1999	.0897	.550 .2289	750 1793 0522	.900 .1619	1402
H	- 0256	.0130	-: 0797	0522	- 2139	2540
Ť	- 2410	.0279	 1702	- 10h I	0308	1565
.150	1 5550	-1. 1742	1,0943	- 8826	5280	1206
350	1.5550 .7654	1531	1650	- 1620	1023	- 0238
.550	4176	2373	1650 4534	1915	1023	0241
.750	2932	1048			0159	- 0053
.900	23 18	0964	2886	23 18	1680	- 0166
.980	2104	0862	2886 2583	1666	2356	0429
•) • •	•	•000-		2		• • • • • •
	DIP	= 80 DEG	REES,	FC = 4.	2 FH	_
F/FC =	150	.350	- EEN	. 750	ሳሰ ሰ	:980
HM	1969	. 0886	.2222	. 1801	: 1626	1496
H	0254	.0151 .0249	~, 0825	0560	 2325	.2693
<u>T</u>	-2370	0249	 1747	. 1898	.0319	. 1651
.150	1,5539	-1. 1675	1.0851	- 8714	.5187	-: 1188
.350	.7504	1748	1536	1526	.0962	0225
.550	. 4070	2389	. 4625	1905	1059	- 0238
.750	2878	. 1002	4528	. 1511	.0128	0047
.900	. 2279	0944	2815	2385	. 1745	0168
.980	2073	.0844	2524	. 1665	. 2430	.0465
		0.5 550				
- /-a	פוט	= 80 DEG	REES	FC = 5.		-0-
F/FC =	150	350	2138	750 1803	900	980
HM	1941	.0883	2130	1003	1614	. 1621 . 2893
H T	0256	0177	0861 1786	0624 1816	2578 .0315	1765
- 150	- 2325 1:5482	-1: 1488	1.0627	- R400	5037	
	7222	- 2000	1398	- 8499 - 1413	- 080 1	
.350 .550	.7332 3968	.2000 .2395	4720	- 1889	089 1 1042	- 0209 - 0235
750	2831	.0957	4499	16.50	0094	- 0040
.900	2245	.0931	2723	2446	1827	0172
.980	2044	.0832	2451	1649	2511	0513
.900	. 2077	.0072	. 2751	, 1049	•,2511	.05.5
	DIP	= 80 DEG	REES.	FC'= 7.	5 F H	
F/FC =	150	1350	<u> 550</u>	.750	.900	.980 : 1795
HM	1910	10890	12032	. 1805	. 1558	:1795
H	026 1 2277	0211	- 0914	. 47.30	- 2941	. 3 100
<u> T</u>	<u>2277</u>	0177	- 1823	. 17 19	. 0278	: 1926
.150 .350 .550	1.5353	-1:1142	1.0267	- 8185	4328	-, 1120
.350	7139 3871	2284	1244 4824	- 1287	.0813	0193
:550	:38/1	2385	4824	- 1869	.1022	0232
1/50	2/8/	. 09 15	4436	1840	0054	0032
900	2210	0926	- 2602 - 2361	2503 1616	. 1934 . 2601	0176
.980	2015	.0826	. 230 1	. 10 10	. 2001	.0581
	DIP	= 80 DEG	REES.	FC = 10.	O FH	
F/FC =	. 150	= 80 DEG .350 .0901	550	750 1815	19 00	:980
FIM	1879	0901	1931	1815	1492	. 1982
H	- 0267	. 024/	~ {}9 /9	0884	- 3342	3456
ተ	- 2238	.0149	- 1855	. 1638	.0209	2098
150	1.5190	-1.0766	9909	- 7870	46 15	1079
.350	6972	2522	1123	- ∹. 1187	. 0749	0179
.550	. 3796	. 2356	4923	- ∵. 1847	1001	0229
.750	. 2749	.0882	4358	.2017	.0019	- 0025
. 90 0	2178	.0927	2489	. 2543	. 2043	0180
.980	. 1986	0825	.2281	. 1577	. 2674	.0656
	D 1 D	_ PA NEA	DEEC	FC - 15	O En	
F/FC =	150	= 80 DEG _350	rees,	FC = 15.	19 00	.980
HM =	150 1639	.0920	1810	.750 .1851	1331	2249
H H	0278	0310	- 1098	1147	- 3942	3861
T	2191	.0130	 1902	1557	.0061	2345
.150	1. 1976	-1:02 94	9449	- 7415	4299	- 1014
350	6759	2787	1013	7415 1085	0681	- 0165
.350 .550 .750	3707	2285	5070	1804	.0963	- 0222
750	- 2698	.0839	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2255	0024	0016
.900	2134	.0929	2357	2575	2189	- 0183
980	1950	.0821	2199	1523	2740	.0767
		-	- //		÷ · · -	

Table 3. Coefficients including an extra-ordinary ray correction for underlying ionization, for critical frequencies between about 2f_H and 10f_H.

P= 5 DEGREES, FC= 2.5 FH, F1= 1.00 FH, FX= 1.62 FH

F1 -600 -750 -900	0171 4706	2/24 .0449 .3041 8u74	- 2445 - 3165 - 2335	F1= 1.00 .750 .1837 .3424 .2870 1784 2651 .1272 .1003 .0673	6729 1485	.3313 .5472 .3445
F/FC = HM H	. (F1) .3776 0663 4123 1.9556 .8545 .5874 .4511	- 1267 - 10/3 - 2270 - 9813 - 3238 - 2631	.500 .1233 2209 1884 .0431 .5507 .3917 .1911	0263 1152 2954	.0560 5899 0513 .0113 .0425	<u>980</u> 3282
F/FC = HM H T F1 .600	(F1) 5874	(FX) - 2817 - 0458 - 3131 - 8353	.600 .1545 2346 2876	- 1311	.0198 6504 1348	1.62 FH .980 .3234 .5319 .3334 0140 0218 0083 0197 .1187
F/FC = HM H T F1	· - (F1)	S, FC= (FX) - 1343 1086 2376 -1:0336	5.0 FH.	F1* 1.20 -700 -2416 -2723 -1059 -0203 -1133 -2895 -2799	0599 - 5700 - 0448	~ QXO
F/FC == HM H T -600 -750	5 DEGREE (F1) -6277 -0316 -5340 1.8596 1.1357 8558 7074 6435	S, FC= (FX) 2953 .0469 .3282 8817 5414 4272 3443 3140	.600 .1192 2149 2298 .0424 .5228 .3837	F1= 1.00 -750 -2260 -3023 -2301 -0305 -1677 -1800 -2120 -1238	.900 .0140 6052 1059 .0133 .0653 .0108	.980
HM H T -540 -720 -890	5 DEGREE (F1) .5290 0537 5301 2.1200 1.0914 .7751 .6141 .5519	2445 .0743 .3196 -1.1325 5215 3983	.540 .1268 1931 1747 .0222 .5215 .3838 .1968	2354 2528 1368 0146 1298 2448 2579	FH, FX= .890 .0497 5513 0500 .0492 0058 .2446 .2534	1.80 FH 980 .3036 .4710 .2983 0015 0108 .0004 0144 .1215
F/FC = HM H T F1	5 DEGREE: (F1) 2170 - 1708 - 3517 2 1173 6195 4515 2922 2792	(FX) .0018 .2177 .1806 -1:1199 0851	. 450 . 1402	0020 0071	.870 .0897 5139 0123 .0009 .0323 0245	1.80 FH 980 3031 4334 2914 - 0002 - 0062 0037 - 0113 1346

```
DIP= 35 DEGREES, FC= 2.5 FH. F1= 1.00 FH, FX= 1.62 FH

F/FC = (F1) (FX) .600 .750 .900 .980

HM .6795 -.3100 .0657 .2701 .0073 .2874

H -.0438 .0476 -.1866 .2613 -.5397 .4611

T -.5016 .2616 .2618 .2802
                                                                                                               980
2874
4611
2802
                                                                                          - 5397
- 0614
                                      <u>346</u>1
                  - 5914
2.0120
                                                      -- 1474
-- 1541
                                                                             1739
1228
                                                                                          -.0573
:0212
                                   - 9370
- 5726
- 4493
- 3614
                                                                                                               .0136
                                                      - 1541
3806
                                                                                                            - 0043
0045
- 0082
    .600
                                                                         -. 0707
                  1.2457
                   9391
                                                                          2355
    .750
                                                        29 18
1382
                                                                                          -. 0216
    .900
                                                                                             . 1927
                                                                           . 1826
                                    -. 3291
    .980
                    .7000
                                                                                             2045
                                                                                                               .1101
                                                        1319
 DIP= 35 DEGREES, FC= 4.0 FH, F1= 1.20 FH, FX= F/FC = (F1) (FX) .540 .720 .890

HM .5591 -.2644 .1203 .2422 .0623

H -.0615 .0734 -.1712 .2182 -.4949

T -.5721 .3446 -.1448 .1215 -.0229
                                                                                                  FX= 1.80 FH
                                                                                                              980
2805
4361
2737
0040
                                  - 2044
0734
3446
-1 2353
- 5643
- 4277
                  - 5721
2.2653
1.1678
8274
6513
                                                       -0551
-4728
-3648
-1848
                                                                        0387
-- 1071
-- 2463
                                                                                         -.0176
-.0392
-.0129
-.2252
-.2444
     FI
   :540
                                                                                                            -- 0084
    .720
                                                                                                              .0021
                                   -.3215
-.2922
                                                                          . 2728
                                                                                                             -.0127
    890
    .980
                    . 5850
                                                        . 1814
                                                                          . 1694
DIP= 35 DEGREES, FC= 7.0 FH. F1= 1.20 FH. FX= 1.80 FH
F/FC = (F1) (FX) .450 .680 .870 .980

HM .2267 -.0095 .1487 .2432 .1079 .2829

H -.1732 .2107 -.1822 .2059 -.4683 .4071

T -.3706 .1931 -.1686 .0649 .0088 .2723
                   3706
2727
6414
4735
3023
2896
                                 1931
-1,2670
   F1
.450
.680
.870
.980
                                                     - 0089
5178
4141
2053
2141
                                                                                         - 0021
- 0334
- 0249
- 2414
- 2817
                                                                          - 0<u>0</u>48
                                                                                                             0004
0064
                                  - 0969
- 1835
- 0551
- 0840
                                                                        - 0893
3171
3173
                                                                                                            -0038
-0112
                                                                          . 1739
                                                                                                              . 1247
DIP= 45 DEGREES, FC=
F/FC = (F1) (FX)
HM .7796 -.3396
H -.0554 .0485
T -.6780 .3772
F1 2.2278 -.9867
                                                  2.4 FH. F1= 1.00 FH, FX=
.600 .750 .900
-.0449 .3514 -.0110
-.1568 .2133 -.4610
                                                                                                 FX= 1.62 FH
                (F1)
.7796
-.0554
-.6780
2.2278
1.4492
1.0882
8876
                                                                                                             980
2644
4114
2413
                                                     - 0350
- 4720
                                                                          .3557
                                                                                          - 0018
                                                                                         -. 1628
                                                                                                              .0380
                                                     -. 4720
1242
1232
.0067
                                                                         .1010
.3405
.3688
.2816
   .600
                                  - 6322
- 4921
- 3952
- 3593
                                                                                         - 0557
- 0772
1292
1562
                                                                                                             .0136
.0174
   .750
.900
                                                                                                              0030
   .980
                   8052
                                                        .0099
                                                  3.5 FH. F1= 1.20 FH. FX

.540 .720 .890

.0495 .2851 .0625

-.1588 .1853 -.4301

-.0815 .0884 .0158
                                                                                                 FX= 1.80 FH
90 980
625 2553
301 3937
158 2422
DIP= 45 DEGREES, FC=
F/FC = (F1) (FX
                (F1)
-6929
--0607
                                   (FX)
-.3453
                                     0707
4194
   Н
                                                                                        - 0667
- 0667
- 0037
- 0394
- 1857
                                                     - 0815
                     6843
                                -1.3130
                                                     -. 2495
2821
                                                                                                             0149
0012
0080
                                                                       -.0061
   -F1
                     4609
                                 -.7356
-.5417
-.4126
-.3728
  .540
.720
.890
                 1.4621
1.0185
                                                       .2637
.1024
                                                                         2909
3279
2245
                   8037
                                                                                                            -: 0071
                                                        . 1056
                                                                                                              .1033
   .980
                   .7197
                                                                                            2198
                                                 6.0 FH. F1= 1.20 FH. FX

470 690 880

1506 2422 1177
DIP= 45 DEGREES, FC=
                                                                                                 FX= 1.80 FH
                                                                        690
2422
1512
                                                    .470
.1506
-.1433
                                  (FX)
-: 1017
F/FC =
                                                                                                             980
2560
                  .3353
                                                                                         - 4111
                -. 1159
                                1337
2503
-1.4257
                                                                                                              3854
2484
  Н
                                                    - 1501
- 0434
                                                                                           - 0283
                                                                         07 18
0247
                     4487
                                                                                         -.0111
                                                                                                             .0024
                2.4531
                                 -: 2868
                                                       4935
4082
2016
                                                                                        0354
- 0235
2304
2692
                                                                                                           - 0074
0040
    470
                                                                       -.0933
                                 -. 2728
-. 1473
                  5933
4136
  690
880
                                                                         2909
                                                                         .3150
                                                                                                            -.0132
   980
                   3785
                                  - 1493
                                                       2018
                                                                         1933
                                                                         = .90 FH, FX
.750 .900
.3587 .0041
.1540 -.3719
DIP= 55 DEGREES, FC=
                                                  2.3 FH. F1=
                                                                                                FX= 1:53 FH
                                                    600
-- 0357
-- 1154
                                                                                                             .980
.2312
                .7250
-.0626
                                     (FX)
2833
F/FC
   HM
                                                                                                             3561
2006
                                    0398
   Н
                -.6555
2.1979
1.3661
1.0266
                                                                                          0554
- 2367
                                                         0406
                                                                           0360
   T
                                                                                                             0551
                                                                        4974
1394
3532
3923
                                  <del>-.9080</del>
                                                    -.6058
   F1
                                 - 5318
- 4126
- 3300
- 2995
                                                                                        - 0785 - 0960
                                                                                                             0190
0218
   .600
                                                       .0858
                                                      .1070
.0038
   .750
  .900
                                                                                           .0963
                                                                                                             .0068
                  8309
                                                                         3101
                                                                                           . 1377
                   .7528
                                                       .0045
                                                                                                              .0945
   .980
```

```
DIP= 55 DEGREES, FC= 3.0 FH, F1= 1.00 FH, FX= F/FC = (F1) (FX) .540 .720 .890 

HM .6312 -.2724 .0484 .2900 .0800
                                                                                                                       FX= 1.62 FH
                                                                                                                                      .980
.222
                                        - 2/24
.0517
.3346
-1.0923
- 5841
- 4276
- 3246
- 2926
                                                                                          1379
0644
2271
0223
                                                                                                                                       .3446
                                                                  -. 1245
                                                                                                             -.3531
-.0535
-.1009
-.0169
                      -.0566
     Н
                     - 6246
2: 2976
1: 3509
                                                                                                                                      2077
0223
                                                                 - 0355
- 3539
2236
      ٦
       F1
     .540
                                                                                                                                       .0041
                                                                    2397
0918
                                                                                          29 18
3440
                                                                                                                                      .0100
                       .9350
     .720
                                                                                                              -.0490
                                                                                                                1598
                        .7340
                                                                                                                                    -. 005 Ĭ
      .890
                                                                                           .2465
     .980
                                                                                                                2079
                                                                                                                                      0898
                         6561
                                                                     .0923
 DIP= 55 DEGREES, FC= 4.0 FH. F1= 1.20 FH, FX= 1.80 FH
F/FC = (F1) (FX) .540 .720 .890 .980

HM .6287 -.3073 .0968 .2607 .0957 .2254
H -.0743 .0670 -.1186 .1338 -.3608 .3529
T -.6709 .3987 -.0650 .0725 .0510 .2137
F1 2.6198 -1.4656 -.2831 .2004 -.0920 .0205
                                                                                                                                     .2254
.3529
.2137
.0205
                                                                - 1186
- 0650
- 2831
                                                                                        - 0420
2629
3184
                                          - 6554
- 4891
- 3681
                                                                   3459
3095
1444
                                                                                                                                   -.0016
     .540
                                                                                                               .0097
                      1.3435
                                                                                                             -.0351
.1781
     . 72u
                       .9449
                                                                                                                                   .0070
-.0082
     .890
                        7353
     .980
                                                                                          .2188
                                          -.3332
                                                                    1389
                                                                                                                                       .0893
                        .6597
                                                                                                                . 2265
 DIP= 55 DEGREES, FC= 6.0 FH. F1= 1.20 FH, FX-
F/FC = (F1) (FX) (470 (690 (880))
HM (3564 (1225 (1573 (2377 1403))
H (1137 1229 (1210 (1173 (3568))
T (4800 2725 (1367 0645 0558))
F1 2.6618 (136107 (1367 0645 0558))
F1 2.6618 (136107 (1367 0645 0558))
                                                                                                                      - 0040
                                                                                       -.0929
2820
3228
2014
     .470
                      .9081
                                         - 3211
                                                                                                                                   - 0072
0043
                                                                    47/9
                                                                                                             0352
    .690
                       6296
4355
3987
                                          -.3016
                                                                                                            -. 0255
2178
                                                                    2028
                                          - 1659
- 1660
    .880
                                                                                                                                   -0129
                                                                                                                2709
                                                                                                                                      .0945
     .980
                                                                    2004
                                                             2.2 FH. F1= 90 FH. FX=
.600 .750 .900
-1841 .4684 -.0223
-.0749 .0935 -.2765
.1986 -.0764 .1386
-1.0423 .8216 -.3875
-.2579 .3769 -.1880
-.1230 .5044 -.1758
-.1755 .5314 .0119
-.1505 .4424 .0747
                                                                                                                     FX= 1:53 FH

00 980

223 2036

765 2951

386 1516

875 0876

880 0431

758 0393
 DIP= 66 DEGREES, FC=
F/FC = (F1) (FX)
HM .8413 -.3009
                                                                                      4684
0935
- 0764
8216
3769
5044
5314
4424
                      -.0766
    Н
                                             .0394
                                                             -. 0/49
-1986
-1. 0423
-. 2579
-. 1230
-. 1755
                                          3480
- 9412
                    - 7604
2.4618
     FI
                                         -5812
-4472
-3566
                    1.6071
1:2024
:9674
.8751
    .600
                                                                                                                                     0393
0214
    750
900
                                          - 3232
     .980
                                                                                                                .0747
                                                                -. 1595
                                                                                                                                      .0905
DIP= 66 DEGREES, FC=

F/FC = (F1) (FX)

HM 7714 - 3219

H - 0728 0448

T - 7496 3800

F1 2.5368 -1.1298

.570 1.5706 - 6483

.740 1.1190 - 4803

.980 8874 - 3749

.980 8032 - 3402
                                                             2.7 FH. F1= 1.00 FH, FX=
570 740 900
-0546 3692 0402
-0766 0788 - 2754
1035 - 0100 1148
                                                                                                                     FX=
                                                                                                                                  1:62 FH
                                                                                                                                     980
1958
3011
                                                               -.0766
-.1035
-.7418
-.0368
-.0321
-.0285
                                                                                                                                     16 14
06 19
0249
0263
                                                                                            0100
                                                                                         5332
1923
3853
4308
3477
                                                                                                            -. 2603
                                                                                                            - 1026
- 1139
                                                                                                              .0810
                                                                                                                                     .0077
                                                                                                               . 1375
                                                                                                                                      .0803
                                                           3.5 FH. F1= 1.20 FH. FX

540 720 890

- 0224 3310 0886

- 0910 0895 - 2823

0611 0046 1097

- 6474 4064 - 1798
 DIR= 66 DEGREES, FC=
F/FC = -(F1) - (FX)
HM - .7868 - .3804
                                                                                                                     FX= 1.80 FH
                                                                                                                                    1963
1963
3010
1733
0386
0139
                                                                                                           - 2823
- 1097
- 1798
- 0631
- 0820
                                      0620
4653
-1.4856
                    - 0792
- 8141
   Н
                    2.8679
                                                                -.6474
    F1
   <u>5</u>40
                                                                                        1278
3521
4093
                                         - 8170
- 5924
- 4498
- 4050
                                                                  0324
1267
                    1,7060
1,1788
   720
890
                                                                                                              . 1213
                                                                   .0011
                      .9178
                                                                                                                                     .0003
                                                                                         .3058
                                                                   .0088
    .980
                                                                                                               1891
                        8209
                                                           4.5 FH. F1= 1.20 FH, F)

-500 -700 880

-1075 -2554 1444

-1027 -0950 -2909

-0603 -0457 -0939

-3009 -1805 -0789

3171 -0282 -0057

3248 -2786 -0390

-1444 -3468 -1730

1436 2278 2488
DIP= 66 DEGREES, FC=

F/FC = (F1) (FX)

HM .5764 - 2814

H - 0814 :0771

T - 6569 :3907

F1 2-8215 -1-6380

:500 1:3650 - 6588

:700 9096 - 4809
                                                                                                                     FX= 1.80 FH
                                                                                                                                    980
1978
                                                                                                           1444
- 2905
- 0935
- 0789
                                                                                                                                 3025
1872
0158
-- 0008
                                        - 6588
- 4809
- 3414
- 3103
  500
700
                                                                                                           :0057
                     .9096
-6850
                                                                                                           - 0390
1730
2488
                                                                                                                                  -. 0078
   -880
                                                                   . 1436
                                                                                        .2278
   .980
                                                                                                                                     .0808
                       6093
```

```
DIP= 66 DEGREES, FC= 7.0 FH. F1= 1.20 FH. FX= F/FC = (F1) (FX) .450 .680 .870

HM .2780 -.0653 .1753 .2233 .1762

H ..1564 .1052 -.1115 .1017 -.3146

T ..4397 .2404 -.1369 .0435 .0873

F1 2.9569 -1.9017 -.0854 .0472 -.0210

.450 .7263 -.1498 .4905 -.0973 .0369

.680 .5628 -.2593 .4318 .2890 -.0285

.870 .3446 -.0933 .2147 .3369 .2080

.980 .3338 -.1223 .2148 .1930 .2906
                                                                                                                             FX= 1:80 FH
                                                                                                                                              980
                                                                                                                                              .2125
.3154
.2053
                      2.9569
.7263
.5628
.3446
.3338
                                          -1.9017
- 1498
- 2593
- 0933
- 1223
                                                                                                                   -- 0210
0369
-- 0285
2080
2906
                                                                                                                                             .0040
     .450
.680
.870
.980
                                                                       4905
4318
2147
2148
                                                                                                                                           -.0067
                                                                                                                                           -0042
-0108
                                                                                                1930
                                                                                                                                              .0901
                                                                                            DIP= 80 DEGREES, FC= 2.2 FH. F1=

F/FC = (F1) (FX) 600 7

HM 9099 - 3148 - 2799 1

H - 0861 0368 - 0341 0

T - 8418 3611 3400 -
                                                                                                                             FX= 1.53 FH
                                                                                                                                             980
1691
                                            0368
3611
- 9825
- 6012
                                                                                                                                             2293
1005
                                                                           3400
4164
                  8418
                      2.6898
1.7615
1.3129
1.0488
                                                                                                                                              . 1164
       FI
    .600
    .750
    .900
    .980
 DIP= 80 DEGREES, FC=
F/FC = (F1) (FX)
HM .8668 -.3460
    н
     T
    -F1
    .600
    .750
    .900
    .980
                                                                3.2 FH. F1= 1.20 FH, FX=
-600 -750 -900
-1570 -4778 -0011
-0464 -0393 -2015
-2679 -1664 -2218
-1-2517 1-0964 -5389
-2157 -3970 -2103
-0862 -5234 -1994
-1526 -5662 -0149
-1423 -4719 -0691
DIP= 80 DEGREES, FC=

F/FC = -(F1) - (FX)

HM -9370 --4336

H -0928 -0517

T -9517 -5153

-F1 3-1072 -1-5300

-600 1-8009 --8184

-750 1-3490 --6298

-900 1-0786 --5014

-980 -9770 --4550
                                                                                                                            FX= 1:80 FH
                                                                                                                                             1748
1748
12497
1131
1171
10465
10429
                                                                -1.2517
-1.2517
-2157
-0862
-1526
-1423
                                                                                                                                             .0240
                                                                                                                                             .0793
                                                                4.0 FH. F1= 1.20 FH. FX-540 -720 -890 -1320 -0650 -0462 -2133 -0351 -0059 -1420 -5969 -4325 -2015 -1890 -0474 -0324 -2362 -2963 -0668 -0880 -3800 -1227 -0832 -2805 -2061
 DIP= 80 DEGREES, FC=
F/FC = - (F1) - (FX
                                                                                                                             FX= 1:80 FH
                                         -1.6865
-7348
-7348
-7348
-7348
-74073
-3680
                     7024
-- 0776
-- 7731
3-0105
1- 5235
1- 0620
-- 8193
                                                                                                                                             - 980
- 1613
- 2552
- 1431
    Н
                                                                                                                                            0419
   540
720
890
                                                                                                                                          - 0026
                                                                                                                      .2061
    .980
                         .7350
                                                                       .0832
                                                                                               . 2805
                                                                                                                                              .0631
DIP= 80 DEGREES, FC=

F/FC = -(F1) - (FX)

HM -5343 -2558

H -0814 -0693

T -6401 -3780

-F1 3-0553 -1-8712

-500 1-2538 -5806

-700 -8533 -4439

-880 -6325 -3073

980 -5665 -2823
                                                                FX= 1:80 FH
                                                                                                                                            980
1677
2626
                                                                                                                                         1597
10180
10034
10057
10087
                                                                    ---3156
--3738
-3660
-1763
                                                                                             -0637
-2531
-3402
                                                                                                                  -, 2823
                                                                                               . 2221
                                                                                                                                             .0662
                        .5665
    .980
                                                                       . 1690
                                                               DIP= 80 DEGREES, FC=
F/FC = -(F1) -(FX)
HM :3033 --0904
H -1397 -1405
                                                                                                                            FX= 1:80 FH
                                                                   - (F1)
- 3033
- 1397
- 4633
3-2396
                                                                                                                                             980
- 1860
- 2804
- 1800
                                               1405
   Н
                                        -2:1581
-2:1581
-:1691
-:2890
                                                                                                                                         -0058
-0066
-0044
   - 450
- 680
                       7573
5987
3630
                                            - 1090
- 1380
                                                                                                                                          0106
    870
                                                                                                                      .2945
    .980
                                                                                              . 1990
                                                                                                                                             .0773
                        .3527
```